Permutation and Combination

Module-2
$1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times \ldots$

Recap

Fundamental Principle of Counting

If an event can occur in \mathbf{m} different ways, following which another event can occur in \mathbf{n} different ways, then the total number of occurrence of the events in the given order is $\mathbf{m x n}$."

Generalised Form

Event 1: a_{1} ways
Event 2: a_{2} ways
Total number of ways is $a_{1} \bullet a_{2} \ldots \bullet a_{n}$

Event $\mathrm{n}: \mathrm{a}_{\mathrm{n}}$ ways

Factorial notation

- The notation ' n !' represents the product of first n natural numbers

$1 \times 2 \times 3 \times \ldots \ldots \ldots \ldots(n-1) n=n!$

$$
\begin{gathered}
1=1! \\
1 \times 2=2! \\
1 \times 2 \times 3=3!
\end{gathered}
$$

For a natural number ' n '

$$
\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)!
$$

$$
=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)!
$$

$$
=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)!
$$

Let's discuss:

Question 1:
Evaluate (i) 8!
(ii) 4 ! -3 !

Answer 1:
(i) 8 ! $=1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8=40320$
(ii) 4 ! $=1 \times 2 \times 3 \times 4=24$
$3!=1 \times 2 \times 3=6$
$\therefore 4$! $-3!=24-6=18$

Answer 2:

$3!=1 \times 2 \times 3=6$
$4!=1 \times 2 \times 3 \times 4=24$
$\therefore 3!+4!=6+24=30$
$7!=7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=$ 5040

Question 3: If $\frac{1}{6!}+\frac{1}{7!}=\frac{x}{8!}$, find x.

Answer 3:

$$
\begin{aligned}
& \frac{1}{6!}+\frac{1}{7!}=\frac{x}{8!} \\
& \Rightarrow \frac{1}{6!}+\frac{1}{7 \times 6!}=\frac{x}{8 \times 7 \times 6!} \\
& \Rightarrow \frac{1}{6!}\left(1+\frac{1}{7}\right)=\frac{x}{8 \times 7 \times 6!} \\
& \Rightarrow 1+\frac{1}{7}=\frac{x}{8 \times 7} \\
& \Rightarrow \frac{8}{7}=\frac{x}{8 \times 7} \\
& \Rightarrow x=\frac{8 \times 8 \times 7}{7} \\
& \therefore x=64
\end{aligned}
$$

$$
\begin{aligned}
\frac{15!}{12!3!} & =\frac{15 \cdot 14 \cdot 13 \cdot 12!}{12!3!} \\
& =\frac{15 \cdot 14 \cdot 13 \cdot 12!}{12!3!} \\
& =\frac{15 \cdot 14 \cdot 13}{3!} \\
& =\frac{5 \cdot 15 \cdot 14 \cdot 13}{3 \cdot 2 \cdot 1} \\
& =5 \cdot 7 \cdot 13 \\
& =455
\end{aligned}
$$

How to simplify???
$\frac{(2 m)!}{(2 m+2)!}=\frac{(2 m)!}{(2 m+2) \cdot(2 m+1) \cdot(2 m)!}$

$$
=\frac{(2 m)!}{(2 m+2) \cdot(2 m+1):(2 m) t!}
$$

$$
=\frac{1}{(2 m+2) \cdot(2 m+1)}
$$

$$
=\frac{1}{4 m^{2}+4 m+2 m+2}
$$

$\frac{(2 m)!}{(2 m+2)!}=\frac{1}{4 m^{2}+6 m+2}$

$$
\begin{aligned}
\frac{n!}{(n-2)!} & =\frac{n \cdot(n-1) \cdot(n-2)!}{(n-2)!} \\
& =\frac{n \cdot(n-1) \cdot(n-2)!}{(n-2)!} \\
& =n(n-1) \\
\frac{n!}{(n-2)!} & =n^{2}-n
\end{aligned}
$$

$$
\begin{aligned}
&(n+1)! \\
&=\frac{(n+1)!}{(n+3)!} \\
&=\frac{(n+3) \cdot(n+2) \cdot(n+1)!}{(n+3) \cdot(n+2) \cdot(n+1)!} \\
&=\frac{1}{(n+3)(n+2)} \\
&=\frac{1}{n^{2}+3 n+2 n+6} \\
& \frac{(n+1)!}{(n+3)!}=\frac{1}{n^{2}+5 n+6}
\end{aligned}
$$

Does order matter???

Tom \& Jerry

Jerry \& Tom 2 \Rightarrow Arrangements

$$
2=2 \times 1=2!
$$

How
 many???

Number of ways to arrange 4 different objects ABCID

AB
 CD
 B

AB
ID C
A
C

AC
D B
A

B C
A
CB

24

1. To arrange 10 different objects $=10$!
2. To arrange digits $2,5,6,8=4!$
3. To arrange 12 finalists $=12 \Gamma$ objects.
$\circ<\underbrace{\circ}_{\substack{12 \text { different } \\ \text { objects }}}$

A Permutation is an arrangement in a definite order of number of objects taken some or all at a time

Permutations when all the objects are distinct

Theorem 1

Number of permutations of \mathbf{n} different objects taken r at a time is:

(Where $0<r \leq n$)

$$
{ }^{n} P_{r}=\frac{n!}{(n-r)!}
$$

Number of ways to arrange 5 students from 8 students.


```
8\times7\times6\times5\times4=6720
```

$$
\begin{aligned}
\text { No.of ways } & ={ }^{8} \mathrm{P}_{5}=\frac{8!}{(8-5)!}=\frac{8!}{3!} \\
& =\frac{8 \times 7 \times 6 \times 5 \times 4 \times 3!}{3!} \\
& =8 \times 7 \times 6 \times 5 \times 4=6720
\end{aligned}
$$

Example

How many different signals can be made by 3 flags from 4-flags of different colors?

Here $\mathbf{n = 4}$ and $\mathbf{r = 3}$ as we need to make 3 flags out of 4 flags. Therefore...

$$
{ }^{4} P_{3}=\frac{4!}{(4-3)!}=\frac{24}{(1)}=24
$$

Exercise:7•3

Question 1:

How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?

Answer 1

3-digit numbers have to be formed using the digits 1 to 9 . Here, the order of the digits matters.
Therefore, there will be as many 3-digit numbers as there are permutations of 9 different digits taken 3 at a time.
Therefore, required number of 3-digit numbers $={ }^{9} \mathrm{P}_{3}=504$

Exercise 7.3 continued

Answer

The thousands place of the 4-digit number is to be filled with any of the digits from 1 to 9 as the digit o cannot be included.

Therefore, the number of ways in which thousands place can be filled is 9 . Therefore, the number of ways of filling hundreds, tens, and units place = permutations of 9 different digits taken 3 at a time $={ }^{9} \mathrm{P}_{3}=\mathbf{5 0 4}$

Question 2:

How many 4-digit numbers are there with no digit repeated?

$$
\begin{aligned}
& { }^{9} P_{3}=\frac{9!}{(9-3)!}=\frac{9!}{6!} \\
& \frac{9 \times 8 \times 7 \times 6!}{6!}=9 \times 8 \times 7=504
\end{aligned}
$$

Thus, by multiplication principle, the required number of 4 -digit numbers $=9 \times 504=4536$

Question 5:

From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman assuming one person cannot hold more than one position?

> Answer 5:
> From a committee of 8 persons, a chairman and a vice chairman are to be chosen in such a way that one person cannot hold more than one position. Here, the number of ways of choosing a chairman and a vice chairman is the permutation of $\mathbf{8}$ different objects taken 2 at a time $={ }^{8} \mathrm{P}_{2}$

$$
\text { Thus, required number of ways }=\quad{ }^{8} P_{2}=\frac{8!}{(8-2)!}=\frac{8!}{6!}=\frac{8 \times 7 \times 6!}{6!}=8 \times 7=56
$$

Exercise 7.3. Quo. 6

HOMEWORK

Exercise 7.3
Os: 3, 4, 7, 8
Find n if $\quad{ }_{3} P_{3}:{ }^{n} P_{4}=1 ; 9$

$$
\begin{aligned}
& { }^{m-1} P_{3}={ }^{n} P_{4}=1=9 \\
& \Longrightarrow \frac{{ }^{n-1} P_{3}=\frac{1}{9}}{{ }^{n} P_{4}} \\
& \Longrightarrow \frac{\left[\begin{array}{c}
(n-1)! \\
(n-1-3)!
\end{array}\right]}{\left[\frac{n!}{(n-4)!}\right]}=\frac{1}{9} \\
& \Longrightarrow \frac{(n-1)!}{(n-4)!} \times \frac{(n-4)!}{n!}=\frac{1}{9} \\
& \Longrightarrow \frac{(n-1)!}{n \times(n-1)!}=\frac{1}{9} \\
& \Rightarrow \frac{1}{n}=\frac{1}{9} \\
& \therefore n=9
\end{aligned}
$$

ASSIGNMENT

1. How many 4 letter words, with or without meaning can be formed out of the letters of the word WONDER , if repetition of letters is not allowed?
2. Ten students participate in a debate. In how many ways can the first three prizes be won?
3. In how many ways can three sports prizes be given to 20 boys when a boy receive any number of prizes?
4. Evaluate $\frac{n!}{(n-r)!}$, when $\mathrm{n}=6, \mathrm{r}=2$
5. Find the total number of ways of answering 6 multiple choice questions, each question having 4 choices.
ANSWERS: 1) ${ }^{6} \mathrm{P}_{4}=360$. (2) ${ }^{10} \mathrm{P}_{3}=720$
(3) $20 \times 20 \times 20=8000$ (4) 30
(5) $4 \times 4 \times 4 \times 4 \times 4 \times 4=4^{6}$

THANK YOU

Stay safe

Stay blessed

